

Mitigating the industrial energy efficiency problem in China

Investigating the acceptance of energy services companies using the Theory of Reasoned Action

A thesis submitted in fulfillment of the requirements for the award of the degree of

DOCTOR OF BUSINESS ADMINISTRATION

from

UNIVERSITY OF NEWCASTLE

by

LI CHUN FUNG B. Eng. (Hons), M.Sc., MCF, MBS

NEWCASTLE BUSINESS SCHOOL May 2012

Declaration

I hereby certify that the work embodied in this Dissertation Project is the result of original research and has not been submitted for a higher degree to any other University or Institution.

LI CHUN FUNG 24th May, 2012

Acknowledgements

I would like to acknowledge with deep appreciation the guidance of my supervisor, Dr. Gian Casimir. I consider myself fortunate to have has such a dedicated and helpful supervisor. Without his generous encouragement and support, this dissertation could never have been completed.

I also wish to express my thanks to staff of the Energy Research Institute, China and the Energy Management Company Association, China for invaluable input and suggestions. Particular thanks go to Mr. Dai Yande, Deputy Director-General of ERI, for his inspiring comments.

Table of Contents

Declaration		i
Acknowledgment Table of Contents		ii
		iii
List of Fig	ures	vi
List of Tab	les	viii
Abstract		Х
Chapter 1	Introduction	1
1.1	Background to the Research	1
1.2	Justification for the Dissertation Project	4
1.3	Research Questions and Hypotheses	5
1.4	Research Methodology	6
1.5	Major Findings	7
1.6	Limitations and Future Research	9
1.7	Structure of the Dissertation	10
Chapter 2	Literature Review	11
2.1	Overview of the Energy Issues	11
	2.1.1 Energy Consumption and Modern Economies	11
	2.1.2 Energy Consumption, Environmental Issues and Climate Change	14
2.2	Energy Sources and Energy Efficiency	21
	2.2.1 Current and Alternative Energy Sources	22
	2.2.2 Energy Efficiency	31
2.3	Energy and China	36
	2.3.1 Industrial Development in China, 1980-2005	36

2.3.2 Energy and China's Economy	42
2.3.3 Analyzing ESCO Deployment	57
2.4 Theory of Reasoned Action	58
2.5 The Research Question	63
2.5.1 The Model	69
2.5.2 The Hypotheses	75
Chapter 3 Research Methodology	90
3.1 Introduction	90
3.1.1 Summary of the Current Situation	90
3.1.2 Applying the Theory of Reasoned Action	92
to Organizations	
3.2 Research Paradigms	93
3.2.1 Positivism and Interpretivism	93
3.2.2 Justification for Choosing the Positivistic	95
Paradigm	
3.3 Research Design	96
3.4 Sampling	98
3.4.1 The Population	98
3.4.2 Sampling	99
3.4.3 Selection of Sampling Scheme	100
3.5 Data-Collection Methods	102
3.6 Scaling, Reliability and Validity	105
3.6.1 Scaling	105
3.6.2 Goodness of Data	105
3.7 Questionnaire Design	107
3.8 Ethical Considerations	118
3.9 Conclusion	119

Chapter 4	Data Analysis and Findings		120
4.1 Introduction			120
4.2 E	Demographic Variables		121
4.3 P	rincipal Component Analyses, Internal Reliability		122
4.4 H	Iypothesis Testing		132
4.5 E	xploratory Analyses		138
4.6 S	ummary		144
Chapter 5	Findings and Conclusions		147
5.1 Ii	ntroduction		147
5.2 N	lajor Findings		149
	5.2.1 Hypotheses	149	
	5.2.2 Exploratory Analyses		150
5.3 Ii	nplications of the Findings for Practice		157
5.4 Ii	nplications of the Findings for Theory		162
5.5 L	imitations and Future Research		165
5.6 S	ummary and Concluding Remarks		169
Appendix A: The Questionnaire			173
Appendix B: Participant Information Letter			177
References			179

List of Figures

Figure 1.1	TRA model under investigation	6
Figure 2.1	Total Final Energy Consumption, 1971-2009	12
Figure 2.2	Historical and Projected Energy Consumption	15
Figure 2.3	Green House Gases Concentration in	16
1 iguie 2.5	the Atmosphere	
Figure 2.4	Global Mean Temperature	18
Figure 2.5	The Energy Era	21
Figure 2.6	Energy-related Carbon Dioxide Emission,	24
	1980-2035	
Figure 2.7	Fossil Fuel Reserves-to-Production (R/P) Ratios	25
	at end 2010	
Figure 2.8	Gen IV Systems and Best Deployment Date	28
Figure 2.9	World Primary Energy Demand, 1980-2035	30
Figure 2.10	Generic Energy Efficiency Strategies	33
Figure 2.11	China's Potential Energy Saving	35
	via Energy Efficiency	
Figure 2.12	GDP vs Energy Use, China 1980-2005	37
Figure 2.13	Composition of China's Percentage GDP Growth,	38
	1990-2005	
Figure 2.14	Comparative GDP Growth Components, China,	39
	India and East Asia	
Figure 2.15	Change in Rural Population, China 1990-2005	40
Figure 2.16	Comparative GDP Composition	41
Figure 2.17	Urbanization and Non-agricultural Employment,	41
	China 1978-2004	
Figure 2.18	Recent GDP Growth, China	42
Figure 2.19	GDP Composition by Sector, China 1981-2009	44

Figure 2.20	Weights of Heavy and Light Industries,	48
	China 1981-2010	
Figure 2.21	Growth Rate of Heavy and Light Industries,	52
	China	
Figure 2.22	Theory of Reasoned Action	59
Figure 2.23	Theory of Planned Behaviour	62
Figure 2.24	Split of Energy Efficiency Improvement	65
	Initiatives	
Figure 2.25	The ESCO TRA model	72
Figure 2.26	Illustration of the hypotheses in the proposed model	75
Figure 3.1	Sampling Decision Tree	100
Figure 3.2	The ESCO TRA model	109
Figure 4.1	The ESCO TRA Model	132
Figure 4.2	Multiple Regression on Attitude to use ESCOs	139
Figure 4.3	Multiple Regression on Subjective Norm	140
	to use ESCO	
Figure 4.4	Multiple Regression on Preference for EPC	141
Figure 4.5	Multiple Regression on Intention to use ESCOs	142
Figure 4.6	Multiple Regression on Actual use of ESCOs	143
Figure5.1	The ESCO TRA model	149
Figure5.2	Results of Exploratory Analyses	151
Figure 5.3	Comparison of Full Model and Reduced Models	156

List of Tables

Table 1.1	Summary of Hypotheses Testing Results	7
Table 2.1	Energy Consumption and Reserves	13
Table 2.2	World Primary Energy Demand	23
	(in Million ton oil equivalent)	
Table 2.3	China GDP, 1980-2005	36
Table 2.4	Comparative Performance in Agriculture, Industry	39
	and Services, China 1952-2003	
Table 2.5	GDP of China, 1981-2011	43
Table 2.6	Energy Consumption by Sector, China 1996-2009	45
Table 2.7	Percentage GDP vs Percentage Total Energy	46
	Consumption, Secondary Production	
Table 2.8	Ratio between Light and Heavy Industries,	47
	China 1980-2010	
Table 2.9	Detailed Energy Consumption by Sector,	51
	China 1995-2009	
Table 2.10	Variables under investigation	70
Table 2.11	Hypotheses for the TRA model	74
Table 3.1	Sampling Schemes	99
Table 3.2	Sampling Design	101
Table 3.3	Data Collection Methods	103
Table 3.4	Validity	106
Table 3.5	Reliability	107
Table 3.6	Measurement of Perceptions of ESCO Capability	111
Table 3.7	Measurement of Trust in ESCO	112
Table 3.8	Measurement of Government Incentives	113
Table 3.9 viii	Measurement of Preference for EPC	114

Table 3.10	Measurement of Attitude to use EPC	116
Table 3.11	Measurement of Subjective Norm to use ESCOs	116
Table 3.12	Measurement of Intention to use ESCOs	117
Table 3.13	Measurement of Actual use of ESCOs	117
Table 4.1	Descriptive statistics of the participants	121
Table 4.2	Age and work experience of participants	122
Table 4.3	Principal Component Analyses for CAPABILITY	123
Table 4.4	Principal Component Analyses for TRUST	124
Table 4.5	Principal Component Analyses for GOV_INC	125
Table 4.6	Principal Component Analyses for ATTITUDE	125
Table 4.7	Principal Component Analyses for SUBJ_NORM	126
Table 4.8	Principal Component Analyses for EPC_PREF	127
Table 4.9	Principal Component Analyses for INTENTION	127
Table 4.10	Principal Component Analyses for USE_ESCO	128
Table 4.11	Correlation coefficients and Cronbach Alphas	129
	for the measured variables	
Table 4.12	Discriminant Validity Test	131
Table 4.13	Findings for the ESCO TRA model	145

Abstract

The rapid growth of the Chinese heavy-industry sector has presented both opportunities and challenges to the country. While the heavy industrial sector contributes significantly to the growth of China's GDP, the energy-intensive nature of this sector has led to unprecedented problems in resource sustainability, pollution, and climate change.

Encouraging firms in the heavy industrial sector to use energy services companies (ESCOs) to improve energy efficiency has been a high-priority of the Chinese Government. According to the traditional view, regulations and incentives are believed to be important drivers for ESCO adoption. It is also believed that energy performance contracting (EPC) is an effective tool for ESCO deployment based on its economic viability. Thus, many policies and incentive schemes in China focus on promoting EPC. However, while there are some successful cases, the current level of adoption of ESCOs in the sector remains generally low.

This research uses the TRA framework to provide a quantitative investigation into how tangible factors such as government incentives and intangible factors such as the perceived capability of and trust in ESCOs are related to the adoption of ESCO services by firms in Chinese heavy industries. A proposed model incorporating the existing views about EPC has been developed and tested. The results indicate that government incentives significantly predict intention to use ESCOs and the actual use of ESCOs, which is consistent with the traditional view. However, although preference for EPC is a significant predictor of the intention to use ESCOs, it has been demonstrated that attitude to use ESCOs is an even stronger predictor. The attitude is, in turn, strongly affected by the perceived capability of ESCOs and, to a lesser extent, Trust in ESCO. On the other hand, trust directly affects the intention to use ESCOs at a magnitude comparable to preference for EPC. Based on the research findings, we have recommended to develop an ESCO accreditation system and a sector-based collective guarantee scheme.